Kernel Sequential Monte Carlo
نویسندگان
چکیده
We propose kernel sequential Monte Carlo (KSMC), a framework for sampling from static target densities. KSMC is a family of sequential Monte Carlo algorithms that are based on building emulator models of the current particle system in a reproducing kernel Hilbert space. We here focus on modelling nonlinear covariance structure and gradients of the target. The emulator’s geometry is adaptively updated and subsequently used to inform local proposals. Unlike in adaptive Markov chain Monte Carlo, continuous adaptation does not compromise convergence of the sampler. KSMC combines the strengths of sequental Monte Carlo and kernel methods: superior performance for multimodal targets and the ability to estimate model evidence as compared to Markov chain Monte Carlo, and the emulator’s ability to represent targets that exhibit high degrees of nonlinearity. As KSMC does not require access to target gradients, it is particularly applicable on targets whose gradients are unknown or prohibitively expensive. We describe necessary tuning details and demonstrate the benefits of the the proposed methodology on a series of challenging synthetic and real-world examples.
منابع مشابه
An Adaptive Sequential Monte Carlo Sampler
Sequential Monte Carlo (SMC) methods are not only a popular tool in the analysis of state–space models, but offer an alternative to Markov chain Monte Carlo (MCMC) in situations where Bayesian inference must proceed via simulation. This paper introduces a new SMC method that uses adaptive MCMC kernels for particle dynamics. The proposed algorithm features an online stochastic optimization proce...
متن کاملStigmata in Sequential Monte Carlo
iii Abstract Sequential Monte Carlo (SMC) has, since being " rediscovered " in the early 1990's, become one of the most important inference techniques in machine learning. It enjoys a prominent place in statistics, robotics, quantum physics, as well as control and other industrial applications. SMC methods represent probability densities as a dicrete set of N Dirac masses called particles. This...
متن کاملExorcising N 2 Stigmata in Sequential Monte Carlo
ii Abstract Sequential Monte Carlo (SMC) has, since being " rediscovered " in the early 1990's, become one of the most important inference techniques in machine learning. It enjoys a prominent place in statistics, robotics, quantum physics, as well as control and other industrial applications. SMC methods represent probability densities as a dicrete set of N Dirac masses called particles. This ...
متن کاملBayesian Inference in Decomposable Graphical Models Using Sequential Monte Carlo Methods
In this study we present a sequential sampling methodology for Bayesian inference in decomposable graphical models. We recast the problem of graph estimation, which in general lacks natural sequential interpretation, into a sequential setting. Specifically, we propose a recursive Feynman-Kac model which generates a flow of junction tree distributions over a space of increasing dimensions and de...
متن کاملPopulation Based Particle Filtering
This paper proposes a novel particle filtering strategy by combining population Monte Carlo Markov chain methods with sequential Monte Carlo chain particle which we call evolving population Monte Carlo Markov Chain (EP MCMC) filtering. Iterative convergence on groups of particles (populations) is obtained using a specified kernel moving particles toward more likely regions. The proposed techniq...
متن کامل